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A comparison between buoyant vortex rings 
and vortex pairs 

By J. S. TURNER 
Mechanics of Fluids Department, University of Manchester 

(Received 25 June 1959) 

In  this paper it is shown how earlier results for buoyant vortex rings may be 
extended to describe the corresponding two-dimensional caae, which arises in 
the theory of bent-over plumes. It is again assumed that in uniform surround- 
ings the circulation remains constant while the buoyancy acts to increase the 
momentum of the pair. The behaviour in two dimensions is quite different 
from that in three, however; a buoyant vortex ring spreads linearly with height, 
whereas a buoyant pair spreads exponentially with height, or linearly with time 
(and therefore, in a bent-over plume, linearly with distance downwind). 

The theory has been extended to describe the rise of buoyant rings and pairs 
through stably stratified surroundings having a linear density gradient. The 
behaviour near the maximum height reached is found to depend critically in 
both cases on the relative rates at which the circulation and the momentum 
fall to zero. If these reach zero together, the rings or pairs will steadily increase 
in size and come to rest at  a finite height and with a finite radius. If the circula- 
tion is non-zero when the momentum vanishes, the radius begins to decrease 
soon after the buoyancy becomes zero, and the vortices will therefore tend to 
break up suddenly and mix into their surroundings. There is a considerable 
increase in the final height which should be attained by vortex rings or bent- 
over plumes if the initial circulation is increased; it is suggested that releasing 
smoke intermittently, rather than continuously, at high velocity might be a 
means of increasing the effective height of chimneys in calm conditions. When 
the circulation reaches zero before the momentum does, the solutions indicate 
that the radius becomes very large near the level of zero buoyancy. 

1. Introduction 
In  a previous paper (Morton, Taylor & Turner (1956), which will be referred to 

hereafter as I), the properties of an isolated mass of buoyant fluid released from 
rest in stratified surroundings were investigated, with the object of obtaining 
results which could be applied to the atmosphere. It was later shown (Turner 
(1957), to be referred to as 11) how the motion in such a ‘buoyant cloud’ can be 
considered as a particular case of a buoyant vortex ring. The more general 
theory deals with the situation in which an arbitrary amount of vort,icity is 
injected into the ring as it is formed, and the behaviour is found to be altered 
greatly by this extra vorticity. The buoyant cloud corresponds to the case in 
which the only circulation is produced by the buoyancy, during the initial 
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acceleration from rest ; thereafter the cloud spreads linearly with height in 
uniform surroundings, but a t  a larger angle than a buoyant ring containing the 
same total buoyancy and more vorticity. 

At the time the above work was done, there was no reason to suppose that the 
corresponding two-dimensional problem would have a real physical significance, 
although the line source of buoyancy released continuously has been treated in 
the literature (e.g. Rouse, Yih & Humphreys 1952). Recently, however, Scorer 
(1958) has followed up his earlier work on ‘thermals’ (the name he has adopted 
for what we have called ‘ buoyant clouds ’) by suggesting that the behaviour of 
plumes of smoke when they have been bent over by a cross-wind and become 
nearly horizontal, can conveniently be discussed in terms of a line source of 
buoyancy. It is in fact sometimes observed that a plume of smoke bent over 
in this way tends to split sideways into two concentrated regions with a clear 
space between them, and the effect is clearly shown in the photograph obtained in 
a laboratory channel (figure 1, plate I), which will be discussed in more detail in 
9 2.1. The flow in planes perpendicular to the axis of the plume is very like that 
in a vortex pair, with a region of greater than the mean velocity of rise in the 
centre and a slower region on each side. The behaviour of a short length of such 
a plume as it is swept downstream should be similar to that from a two-dimen- 
sional source developing in time, and Scorer has initiated experiments to study 
this simplified problem in the laboratory. 

In  this paper it will be shown that an extension of the ideas developed for 
vortex rings may again be used to obtain an understanding of the two-dimen- 
sional case. There are, however, certain important differences, both when one 
considers the generation of the motion and the subsequent rate of spread. The 
first purpose of this paper will therefore be to derive corresponding results to 
those obtained for buoyant vortex rings in uniform surroundings, and to point 
out where the two cases differ physically. The attempts at extension to vortex 
pairs in a stratified ambient fluid have also led to a more complete under- 
standing of the vortex rings in this case, and in the second part of this paper we 
shall discuss the different types of behaviour which can be obtained, particularly 
near the maximum height reached by the rings or pairs. 

2. Motion in uniform surroundings 
2.1. Buoyant vortex rings 

The assumptions and results of I1 will be summarized in this section, but some 
familiarity with the earlier papers will be assumed when comparisons are made. 

The basic assumption is that in uniform surroundings, the circulation K in 
a buoyant vortex ring remains constant, while the buoyancy acts to increase 
the momentum of the mass of fluid moving with the ring. This idea may be 
justified as follows. It is clear that an increase of momentum implies an increase 
in the radius of the ring, and therefore the addition of external fluid. It is 
observed that at least some (and sometimes all) of the added fluid is drawn up the 
centre from behind, thereby tending to concentrate the buoyant fluid in a ring, 
even in cases where it has been uniformly distributed to start with. Thus a 
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circuit may be taken round the vorticity-containing region which lies completely 
in irrotational fluid of constant density; that is, K must be constant. It is also 
implied that any turbulent motion is much less important than the large-scale 
circulation. 

If we neglect the effect of small density differences in the inertia terms, the 

( 1 )  
momentum P is given by 

where R is the 'mean radius' of the ring. Hence the equation balancing the 
buoyancy force with the rate of change of momentum is 

P = npKR2, 

or 
dR2 F - 
at nh" 

Here the total buoyancy pF is defined by 

where W is the volume of buoyant fluid, of density p ' ,  and p is the density of the 
surroundings. I n  uniform surroundings F is constant, and equation (2)  may be 
integrated to give 

In order to proceed further we need to make some assumption about the 
vorticity distribution in the moving mass, since the velocity V of a vortex ring 
is critically dependent on the size of the vorticity-containing region. If we 
assume that the distribution remains similar at all height,s, we have 

F' = cK/R, 

and hence 

where x is the height above a virtual source and c and a are constants. In  terms 
of the distance h between states R,, and R, time t apart, we may obtain the form 

Thus, for a given circulation, increasing the buoyancy gives a lower velocity, 
i.e. a longer time to reach a given height. 

2.2. Buoyant vortex pairs 

When there is no density difference in the fluid through which a vortex pair is 
travelling, then we know (Lamb 1932, $155) that the velocity V and the 
momentum per unit length P' are given by 

K 
4nR' 

V = -  (7)  

and P' = ZpKR, (8) 
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where 2R is the separation of the pair and K is the circulation round one line 
vortex. The (irrotational) fluid motion accompanying the pair has an oval cross- 
section with semi-axes 2.09R and 1-73R; this shape, unlike the corresponding 
one for the vortex ring, is independent of the size of the region containing the 
vorticity, provided this is small compared with R .  The velocity is also inde- 
pendent of this distribution, a fact which makes the two-dimensional analysis 
possible with one assumption less than was required in three dimensions. (With 
widely distributed vorticity, one might of course have to make some similarity 
assumption, and use a different constant in equation (77.) 

We may again make the assertion that the circulation K is constant, and for 
the aame reasons ; an increase in momentum implies a separation of the pair. 
Suppose that the pair contains a volume Q per unit length of fluid of density p'.  
Then, neglecting density differences except in the buoyancy term, .we have 

or 
dR F' 
dt 2K' 
_ -  - -  

where the buoyancy pF' per unit length is defined by 

F' = gQ(P ____. - P') 
P 

In  uniform surroundings F' is constant, and (9) may be integrated to give 

(9) 

R - R, = F't/2K, ( 1 1 )  

where 2R0 and 2R are the initial and final separations, and t is the elapsed time. 
The increase of radius is linear with time, or, referring to the suggested applica- 
tion to the bent-over plume, linear with distance downwind; the corresponding 
theoretical and experimental result in three dimensions (equation (4)) is that R2 
increases linearly with time. 

At this point it is interesting to refer to figure 1 (plate l ) ,  which shows a plan 
view of a bent-over plume in a 10 x 5 cm Perspex water channel. In  this case the 
velocity of the water was about 3 cmlsec and the initial density difference of the 
order of yo. This photograph was produced for illustration only, and should 
not be examined quantitatively, since the velocity across the channel was not 
uniform ; but the splitting is clearly shown, and the spread appears to be nearly 
linear with distance. 

In  the two-dimensional case, using ( 7 )  and (9) with no extra assumption, one 
arrives at the following explicit expression for radius in terms of distance: 

R 2nF' 
- = exp (-K1 h) , 
RO 

where h is the height between states R, and R .  This exponential increase of 
separation with height is very different from the linear spread of vortex rings 
predicted by equation (5). 
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It also follows that in the two-dimensional case, 

t = % [ . ~ p ( ~ h ) - l ] .  2nF‘ 

This shows that, again, increasing the buoyancy for a given circulation reduces 
the rate of rise, because the pair spreads faster. An obvious extension of (13) 
leads to a prediction of the path of the centre of the plume as it is swept down- 
wind at  a known velocity; this can of course only be applied while the motion is 
dominated by the buoyancy and not by the turbulence in the surroundings. 

Using (1 1) and (12), one could determine F’/K and F ’ / P  experimentally and 
hence in principle find F’ and K .  If F’ is known (and in the laboratory the 
volume and density of fluid released usually would be measured), then one 
relation is sufficient to determine K.  

2.3. The generation of the circulation 
So far it has been assumed that F’ and K may be specified separately, which is so 
when extra momentum is given to the fluid initially. The most important case, 
however, is that in which a mass of buoyant fluid is released from rest, and the 
only circulation is that generated soon after the release by the action of the 
buoyancy before non-buoyant fluid has been drawn up the centre. This is what 
in three dimensions we have called a ‘ buoyant cloud’, and it is in the comparison 
of this with the corresponding case for the line source that the contrast between 
the two- and three-dimensional solutions may most clearly be brought out. 

In  three dimensions, the mean half-angle of spread for the cloud was found 
in I1 to be a = 0.18, in agreement with Woodward (1959), and corresponding to 
particular values of F/K2 and c in (5). Such a relation is to be expected on 
dimensional grounds, since F and K 2  have the same physical dimensions, and it 
is not easy to see how the scale could matter, whatever the exact mechanism of 
generation of vorticity might be. In  two dimensions, on the other hand, a non- 
dimensional constant cannot be formed from P’ and K alone, since P’ is the 
buoyancy per unit length. Another length must enter the problem, and one 
might suggest the dimensionally correct form 

F’Ro d 
__ = const. = - 
K2 2n’ 

where 2Ro is the separation of the vortex pair just after the circulation has 
become established, as the first relation to try when interpreting observations. 
With this assumption, it follows from (12) that the shape of the region swept out 
by the pair as it rises will always be the same when it is made non-dimensional 
with the initial separation : 

i.e. 
R 
- = exp (f), 
RO 

where d, the same constant as in (14), should be obtainable by experiment. It 
should be noted, however, that two-dimensional experiments will be much more 
sensitive to the presence of walls in a laboratory tank; the rate of spread is 
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likely to be underestimated and the region swept out will appear more nearly 
wedge shaped if 2R approaches half the total width of the tank. 

The dimensional necessity for the appearance of a length in the equations 
together with F' and K also helps us to understand why the spread in two 
dimensions is not linear with height, as it was in three dimensions. Since 
P'h/K2 is non-dimensional, all we can say using purely dimensional reasoning is 
that the radius must be some function of this group, multiplied by the initial 
radius. The nature of this functional dependence must be determined by a com- 
plete solution such as we have given ; whereas in three dimensions, since F/K2 is 
the relevant non-dimensional group and this does not involve a length, we are 
led immediately to the result that R varies linearly with h. 

3. Motion in a stably stratified fluid with constant density gradient 

Provided the analysis is restricted to the case where the extreme (potential) 
density differences over the region considered are small compared to some 
chosen reference density, say pl at the height of the source, then many of the 
relations obtained for a uniform fluid are again valid for the rise of a buoyant 
vortex ring through a stratified fluid which is at rest. We have 

3.1. Buoyant vortex rings 

and 

An additional equation, obtained in 11, describes the conservation of density 
deficiency; for a constant stable density gradient defined by G = - (g /p l )  (@/ax), 
it  may be put in the form 

where q is a constant which will depend on the shape of the volume moving with 
the ring. 

Some general remarks based on dimensional reasoning were made in I1 about 
the dependence of the final height on the initial buoyancy and circulation Po 
and KO and on G, but no solution of (16) and (17)  was attempted. In  I, Morton 
obtained a solution which, although it was based on slightly different reasoning 
and does not introduced K explicitly, corresponds to a particular relation 
between Fo and Kg. This point will be brought out more clearly in the following, 
where we obtain the more general solution. 

In  order to do this, we require an equation describing the variation of K.  The 
vorticity equation in a medium of varying density becomes 

where the integration is taken round a circuit containing one of the line vortices. 
Let us suppose that at any instant the fluid up the centre of the ring over a 
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depth comparable with R has been drawn from a denser level distant sR below 
the ring (where s is a constant), and that the density of the surroundings has 
not been changed by the passage of the ring. The vorticity equation then 
becomes 

That this is a reasonable assumption to make may be seen by referring to the 
diagrams obtained by Woodward (1959), who examined the motion inside 
thermals in detail, and her results will later be used to evaluate the constants s 
and q. (Her figures incidentally give further support to our assumption that 
external fluid is drawn up the centre, not only in vortex rings in which the 
buoyant fluid is very concentrated near a ring, but also in buoyant clouds where 
this assumption is less obviously valid.) The form of (18) also agrees with the 
solution given in I, as of course it must on purely dimensional grounds. 

Equations (16), (17) and (18) may be put into a more convenient non- 
dimensional form by making the transformations 

R = (2ns)-$F$G-b, x = q-1(2m)gF$G-i[,j 

where 7 ,  f ,  p ,  k, r and 6 are non-dimensional functions, and F, is the buoyancy 
at a virtual origin, to be defined later. The equations become 

From (20 )  we see that d2p/d72 = -p;  this has the solution p = p , c o s ~  + f,sinr, 
and hence f = f,cosT-p,sinT, using (20 )  (b) .  

is chosen in order to make p = 0 and F = F, (i.e. f = 1) If the origin of 
there, we have finally 

p = sin (7 + T ~ )  = sin rl, 

f = cos (7 + 7,) = COS TI. 

Given f ,  and p,, this choice may always be made by taking a virtual origin at 
time 7, = tan-l(po/fo) earlier than the actual origin of time. Note that this 
(non-dimensional) interval will depend, through (19), on F,, Po and also the 
density gradient G .  
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Using (21), we may now obtain easily from (20) the explicit solutions 

k = [cos~~+b]*, (22) 

where b is a constant of integration related to k9, the value of k at the virtual 

(23) 
origin, by kt = (b+ l ) ;  

also 

and 

(24) 

(25) 

The form of solution will depend on the value we assign to b, and the various 
possibilities will be discussed in turn. 

The  case b = 1 

First of all we may note that b = 1 corresponds to the situation in which 
k = 0 when r1 = n, i.e. when p = 0;  the momentum and the circulation then 
fall to zero together. When this value of the constant is substituted in (24) and 
(25), they take the simpler form 

and 

This 

This 

r = (1  COST,)^ ( 2 4 4  

- (254 
d t  sin T~ _ -  
dT ( 1 - cos T1)2 * 

last equation may be integrated to give 

6 = 4(1-c0s7~)~  = 4r.  (26) 

is precisely the form of solution obtained in I up to the level where the 
velocity first vanishes, and it clearly leads to a linear increase of radius with 
distance, as is the case in uniform surroundings. (It is interesting to note, 
without giving the proof here, that the spread is also linear in an unstable linear 
density gradient, provided the same value of k, is chosen.) The variation of the 
other non-dimensional quantities with T~ is shown in figure 2. 

The  case b > 1 

If b > 1, implying that the initial circulation is large enough for k to be non- 
zero when p = 0, the solutions take the form shown in figure 3, which has been 
calculated for illustration with the particular value b = 1.5. It is seen that the 
distance travelled remains finite, although the velocity near the virtual origin 
and at the maximum height is infinite. This results from the fact that T decreases 
to zero soon after the buoyancy vanishes, which is shown more clearly in 
figure 5, where r is plotted against 6. The spread below this level is again nearly 
linear. 

It is unlikely that the loss of fluid from the region moving with the ring can 
take place in an ordered, smooth manner, and in any case there is an excess of 
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vorticity in the moving region. The obvious physical prediction to be made 
from figure 3 is that above a certain level, a buoyant vortex ring in stratified 
surroundings will suddenly collapse and mix with the environment. This effect 
was in fact noted in the experiments reported in 11, but it was there attributed 
(probably wrongly) to the unstable layering within the structure of the ring, 
due to the successive addition of layers of fluid of decreasing density. 

FIGURE 2 

FIGURE 2. The non-dimensional solution for a buoyant vortex ring rising through stably 
stratified surroundings. The initial vorticity is such that the momentum and circulation 
fall to zero together, i.e. the constant b = 1. 

FIGURE 3. The non-dimensional solution for a buoyant vortex ring rising through stably 
stratified surroundings: b = 1-5, so that the circulation is non-zero when the momentum 
vanishes. 

Note that when b is large, the value of [ reached before the ring breaks up is, 
from (25), approximately proportional to bp, so that using (27) it  follows that 
the maximum height is proportional to F;*K$G-*. This agrees with the pre- 
diction made using a dimensional argument in 11, and shows again that there 
can be a considerable increase in the height attained in stable surroundings by 
a mass having a given buoyancy if it is given extra vorticity (or, equivalently, 
extra momentum) when it is released. The intermittent release of smoke a t  a 
high velocity might be worth considering as a method of increasing the effective 
height of chimneys, particularly in the very calm, stable conditions when smog 
is most liable to form; it has been shown on the other hand (Morton 1959) that 
increasing the momentum of a continuous source under these conditions tends 
to reduce the final height slightly. 
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In  exactly the same way, when b = 0.5 (corresponding to the case in which 
the circulation falls to zero before the momentum does), we can obtain the 
solutions set out in figure 4. With this assumption, the radius starts increasing 
linearly, but becomes very large near the maximum height, as is shown in 
figure 5. The physical reality of this last solution is in some doubt-, however, 
since the least circulation possible for a given buoyancy is that corresponding to 
the 'buoyant cloud '. In  the next section we shall investigate this point further 
by comparing the buoyant cloud with the condition implied by the 'critical' 
value of b = 1. 
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3.2. The meaning of the critical condition b = 1 

Using (19), equation (23)  may be rewritten in the dimensional form 

Putting b = 1,  and using ( 5 ) ,  the half-angle of spread corresponding to the 
critical case is seen to be 

a ‘ = L  8ns’ (28) 

Thus, we must now make numerical estimates of the geometrical factors q and s. 
The shapes and streamlines within thermals which Woodward (1959) has 
published immediately allow us to evaluate the volume in terms of R as we have 
defined it, and hence show that q is about 13. In  order to obtain a precise value 
for s, we would need to know the variation of density through the centre of the 
thermal and in its wake ; but by examining Woodward’s diagrams showing the 
distortion of initially horizontal layers in a uniform ambient fluid, we can say 
that s must be about 3. 

Inserting these constants in (28) gives the value cxc = 0.17.  This is very close 
to the half-angle of spread for the buoyant cloud which was discussed in $2.3,  
and it suggests that it is not possible to realize physically the solution for b < 1. 
The agreement between the two values is in fact so close that it is tempting to 
seek a physical reason why they might be identical. It is difficult, however, to 
convince oneself that there is an exact parallel between the processes of 
generation of vorticity in a cloud starting from rest in uniform surroundings and 
the destruction of vorticity as the cloud is brought to rest in a density gradient. 
It is worth remarking that dimensionally the two problems are the same, since 
the density gradient does not enter into the condition specifying the critical 
value of b except through the (small) differences between the values of K and F 
at the real and virtual sources. This is not so for the pair vortex, as will be 
shown in the next section. 

3.3. Buoyant vortex pairs 

The development of the theory for a vortex pair will proceed in a parallel 
form to that given above for vortex rings, and with the same assumptions 
except of course for the obvious modifications necessary in two dimensions. 
For conciseness we will proceed directly to the non-dimensional set of equations 
in the variables r ,  f ’, p‘ ,  k ,  r and f which are related to the physical variables by 

1 
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Here q' and s' are new constants corresponding to q and s for the vortex ring. 
The governing equations become 

= ;, 
(30) 

- r2. 

(31) 

d5 

dP' 
- = f', d7 

dg 3dk 
dr d T 7  2 d r  

p' = kr, 

-- = - df' = - T 2 -  

The solution for p' and f' may be obtained in a form similar to that for the 
vortex ring 

where the virtual origin of 7 has been chosen at a time T, = tan-l (PA/$) earlier 

p' =  sin(^+^,) =  sin^,, f' = COS(T+T,) = COS71, 

than 
again 

the actual 
depend on 

origin, in order to make p' = 0 when f '  
G as well as on Po and Po. 

I I I 
b 

.._ . . . ...... . 1 . 0 .  ....- ', ... . 

I .:- 

= 1. This time will 

FI~TJRE 6. The non-dimensional solution for a buoyant vortex pair in a stably stratified 
fluid: lit = R, so that the circulation and momentum fall to zero together. 

Using (31) in (30), k may now be expressed as 

k = (sin T~ cos r1 - r1 + k",)a-, 
where Ic, is the value of lo a t  the virtual origin. Also 

sin r1 
(sin T1 COB r1 - r1 + k!)) 

r = -  

and dg z -  sin r1 
(sin r1 cos 71 - r1 + k&)f -- 

(33) 

(34) 

It is again convenient to distinguish a 'critical' case, such that k = 0 when 
p = 0, or when 71 = n. This occurs when kz = n; and the solution with this 
value of the constant is shown in figure 6. The integration of (34), which has 
been carried out numerically, must be started at an arbitrary value of 71, since 
the virtual origin is at 5 = -a (as it is for a pair vortex in a uniform ambient 
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fluid). The pair, however, comes to rest at a finite height above the real origin, 
with a, finite radius, as is shown more clearly in figure 9. 

As examples of the other forms of solution possible, we have taken the cases 
7~: = 4 and k: = 2. When k: > n, and there is excess vorticity in the pair, the 
solution (figure 7) indicates that the radius begins to decrease soon after the 

7. pair 

I I 1 I 1 

7 1  

FIGURE 8. The non-dimensional solution for a buoyant vortex pair 
in a stably strati6ed fluid: k: = 2. 

buoyancy vanishes ; the velocity and distance travelled become infinite (in 
contrast to the corresponding vortex ring solution which gave zero radius at a 
finite height). Again we would suggest that physically this implies that such 
a buoyant pair would become unstable and suddenly mix with its surroundings 
at a certain height. 

When kg is less than the critical value n, the radius becomes large a t  a finite 
height (figure 8). The different forms of the relation between radius and height 
are again shown in figure 9. 

It should be noted that there is an important difference between the ' critical ' 
conditions for vortex rings and vortex pairs. We saw in the last section that it is 
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meaningful to look for at least a numerical relation between the conditions 
in a buoyant cloud and the critical state, since these both depend only on K ,  
and Fo which will be little different from KO and Po. For the pair vortex, how- 
ever, the distribution of vorticity established through the action of buoyancy 
forces depends also on a length scale (equation (la)), whereas the critical condi- 
tion depends explicitly on the density gradient in the surroundings (equation (29)). 

0 0.5 1 .o 1.5 
r 

FIGURE 9. The increase of radius of buoyant vortex pairs in stably stratified surroundings 
as a function of height, starting from the height corresponding to T~ = 0.5. When k6 = n, 
the pair comes to rest a t  a finite height and radius ; when k: > IT, the radius decreases soon 
after the buoyancy vanishes, but only becomes zero at an infinite height; and when 
k t  < n, the radius becomes infinite near the level of zero buoyancy. 

Even if experiments were available to allow us to evaluate q' and s' (and none 
have so far been reported), the size and the density gradient would have to be 
known before the appropriate solution could be applied. It seems possible in 
this case that all three types of solution may correspond to physical reality 
under some atmospheric and initial conditions. 
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FIGURE 1 (plate 1). Photograph showing a plan view of a bent-over, buoyant plume. 
Note how it splits sideways into two line vortices, which spread nearly linearly with 
distance. The photograph was taken through the larger face of a 10 cm x 5 cm water 
channel; the bolt heads are spaced at 20 cm intervals. The water velocity was about 
3 cmisec, and the rate of release of buoyant fluid through a 1-5 mm tube was adjusted so 
that the plume bent over near the centre of the channel. 
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